

Where we are going with vaccination of children against influenza

Vana Spoulou MD, MPhil, PhD.

Prof. Paediatric Infectious Diseases

1st Dept of Paediatrics & Immunobiology and Vaccinology Research Lab

"Aghia Sophia" Children's Hospital Greece

National and Kapodistrian UNIVERSITY OF ATHENS

Children's Hospital **"Aghia Sofia"**

WAIdid CONGRESS

Outline of my talk

- Global Burden of Influenza

 Morbidity and mortality in children
- Influenza Vaccines
- Real life IIV and LAV effectiveness
- Immune responses and the Original Antigenic Sin
- Where we are with universal Influenza vaccination
- Next generation Influenza vaccines

https://www.cdc.gov/flu/about/burden/index.html

Epidemiology of Influenza in paediatric populations

- •3–5 million cases of severe disease per year.
- •290–650 thousand deaths due to respiratory complications.
- 870,000 annual hospitalizations globally of children less than 5 years old.

https://www.cdc.gov/mmwr/volumes/72/wr/mm7241a2.htm?s_cid=mm7241a2_w

2024

Influenza virus structure and antigenic drift and shift in influenza infections

https://grippol.ru/en/vaccination/type/

Types of influenza vaccine

	Quadrivalent vs trivalent*	Route	Approved age group	Comments
Inactivated	Quadrivalent or trivalent	Intramuscular	≥6 months	Contains 15 µg of each haemagglutinin
Inactivated: intradermal	Quadrivalent	Intradermal	18-64 years	Contains 9 µg of each haemagglutinin
Inactivated: derived from cell culture	Trivalent	Intramuscular	≥18 years	Contains 15 µg of each haemagglutinin; contains egg protein; manufacturing does not rely on eggs
Inactivated: high dose	Trivalent	Intramuscular 🧹	≥65 years	Contains 60 µg of each haemagglutinin
Live attenuated†	Quadrivalent	Intranasal	2–49 years	Cold adapted; uses a master donor virus plus the haemagglutinin and neuraminidase of the circulating viruses; generates a broader immune response (T-cell, mucosal); not approved for use in immunocompromised patients or pregnant women
Recombinant	Trivalent	Intramuscular	≥18 years	Made with recombinant DNA technology to produce full-length haemagglutinin; shorter manufacturing time than for egg-derived or cell-culture-derived vaccines; can be used in individuals with egg allergy

*Trivalent vaccines contain antigens from the circulating H1N1 and H3N2 influenza A viruses and the dominant influenza B virus circulating at the time of vaccine strain selection. Quadrivalent vaccines contain antigens from the circulating H1N1 and H3N2 influenza A viruses and both lineages of influenza B. †Live attenuated vaccine not recommended by the US Advisory Committee on Immunization Practices for the 2016–17 season; this table represents the 2015–16 influenza season.

Paules C, Subbarao K. Lancet. 2017

Global Influenza epidemiolgy, by virus type and subtype 2024

WAIDID

https://www.who.int/publications

VAXIGRIP TETRA & EFLUELDA TETRA Recommended Composition 2024-2025

- an A/Victoria/4897/2022 (H1N1)pdm09-like virus
- an A/Thailand/8/2022 (H3N2)-like virus
- a B/Austria/1359417/2021 (B/Victoria lineage)-like virus
- a B/Phuket/3073/2013 (B/Yamagata lineage)-like virus.

https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2024-2025-northern-hemisphere-influenza-season

Influenza B Yamagata has disappeared

According to data from the Global Initiative on Sharing All Influenza Data (GISAID) and FluNet, there has been no confirmed detection of the naturally occurring B/Yamagata virus since March 2020.

Live virus vaccines containing the B/Yamagata antigen could pose a remote risk of the lineage being reintroduced into humans via reassortment of B/Yamagata vaccine strain with wild type B/Victoria strain.

https://www.ema.europa.eu/en/documents

Interim Estimates of 2023–24 Seasonal Influenza Vaccine Effectiveness — United States

Aaron M. Frutos, PhD^{1,2}; Ashley M. Price, MPH¹; Elizabeth Harker, MPH¹; Emily L. Reeves, MPH¹; Haris M. Ahmad, MPH¹; Vel Murugan, PhD³; Emily T. Martin, PhD⁴; Stacey House, MD, PhD⁵; Elie A. Saade, MD⁶; Richard K. Zimmerman, MD⁷; Manjusha Gaglani, MBBS^{8,9,10}; Karen J. Wernli, PhD^{11,12}; Emmanuel B. Walter, MD¹³; Marian G. Michaels, MD^{7,14}; Mary A. Staat, MD^{15,16}; Geoffrey A. Weinberg, MD¹⁷;
 Rangaraj Selvarangan, PhD^{18,19}; Julie A. Boom, MD^{20,21}; Eileen J. Klein, MD²²; Natasha B. Halasa, MD²³; Adit A. Ginde, MD²⁴; Kevin W. Gibbs, MD²⁵;
 ruwei Zhu, MD²³; Wesley H. Self, MD²³; Sara Y. Tartof, PhD^{12,26}; Nicola P. Klein, MD, PhD²⁷; Kristin Dascomb, MD, PhD²⁸; Malini B. DeSilva, MD²⁹;
 Zachary A. Weber, PhD³⁰; Duck-Hye Yang, PhD³⁰; Sarah W. Ball, ScD³⁰; Diya Surie, MD³¹; Jennifer DeCuir, MD, PhD³¹; Fatimah S. Dawood, MD³¹; Heidi L. Moline, MD³¹; Ariana P. Toepfer, MPH³¹; Benjamin R. Clopper, MPH³¹; Ruth Link-Gelles, PhD³¹; Amanda B. Payne, PhD³¹; Jessie R. Chung, MPH¹; Brendan Flannery, PhD¹; Nathaniel M. Lewis, PhD¹; Samantha M. Olson, MPH¹; Katherine Adams, MPH¹; Mark W. Tenforde, MD, PhD¹; Shikha Garg, MD¹; Lisa A. Grohskopf, MD¹; Carrie Reed, DSc¹; Sascha Ellington, PhD¹; CDC Influenza Vaccine Effectiveness Collaborators

MMWR Morb Mortal Wkly Rep. 2024

Clin Infect Dis. 2019

Effects of Influenza Vaccination in the United States During the 2017–2018 Influenza Season

Melissa A. Rolfes,^{1,0} Brendan Flannery,¹ Jessie R. Chung,¹ Alissa O'Halloran,¹ Shikha Garg,¹ Edward A. Belongia,² Manjusha Gaglani,³ Richard K. Zimmerman,⁴ Michael L. Jackson,⁵ Arnold S. Monto,⁶ Nisha B. Alden,⁷ Evan Anderson,⁸ Nancy M. Bennett,⁹ Laurie Billing,¹⁰ Seth Eckel,¹¹ Pam Daily Kirley,¹² Ruth Lynfield,¹³ Maya L. Monroe,¹⁴ Melanie Spencer,¹⁵ Nancy Spina,¹⁶ H. Keipp Talbot,¹⁷ Ann Thomas,¹⁸ Salina M. Torres,¹⁹ Kimberly Yousey-Hindes,²⁰ James A. Singleton,²¹ Manish Patel,¹ Carrie Reed,¹ and Alicia M. Fry¹; for the US Influenza Vaccine Effectiveness (Flu VE) Network, the Influenza Hospitalization Surveillance Network, and the Assessment Branch, Immunization Services Division, Centers for Disease Control and Prevention

Vaccination prevented 10% of expected hospitalizations overall and 41% among young children (6 months–4 years)

Vaccine effectiveness against influenza-associated outpatient visits ranged from 59% to 67% and against influenzaassociated hospitalization ranged from 52% to 61%

Flu-Related VE by Age Group (medical Visits, Hospitalizations, and Deaths) 2021-2022 Flu Season

https://www.cdc.gov/flu-burden/php/data-vis-vac/2021-2022prevented.html

Flu-Related VE by Age Group (medical Visits, Hospitalizations, and Deaths) 2022-2023 Flu Season

			Symptomat	tic Illnesses	Medical Vis	sits	Hospitaliz	ations	Deaths	
Age group	Vaccine Coverage (%)	Adjusted VE (95% CI)	Estimate	95% UI	Estimate	95% UI	Estimate	95% UI	Estimate	95% UI
Influenza,	all flu									
6 months- 4 years	65.60%	53.6% (29.7, 70.7)	929,408	(381,274, 1,466,795)	622,704	(254,820, 982,169)	6,479	(2,658, 10,226)	63	(0, 108)
5-17 years	55.10%	45.2% (15.4, 63.4)	1,912,522	(561,523, 3,216,921)	994,512	(290,801, 1,673,209)	5,244	(1,540, 8,820)	53	(0, 151)
18-49 years	43.90%	50.2% (18, 66.1)	1,488,913	(505,456, 2,297,820)	550,898	(189,670, 856,078)	8,357	(2,837, 12,898)	134	(0, 309)
50-64 years	55.40%	47.3% (20.1, 65.2)	1,314,988	(480,874, 2,077,991)	565,445	(204,675, 899,908)	13,945	(5,100, 22,037)	947	(0, 1,839)
65+ years	69.70%	26.9% (9.54, 45.3)	340,168	(18,788, 664,899)	190,494	(10,509, 374,161)	30,924	(1,708, 60,445)	2,479	(0, 11,802)
All ages		46.1% (20.4, 63.6)	5,985,999	(4,051,721, 7,780,911)	2,924,052	(1,981,526, 3,831,442)	64,950	(34,744, 96,011)	3,676	(0, 12,942)

https://www.cdc.gov/flu-burden

Effectiveness against subtypes

RESS

Influenza season	Total Influenza cases	VE against A(H1N1) PDM09	VE against A(H3N2)	VE against Influenza B/Victoria
2022-2023	20,477 (six European studies, covering 16 countries)	All ages: 28-46% <18 yo: 49-77%	All ages: 2-44% <18 yo: 62-70%	All ages: >50% <18 yo:87-95%
2023-2024	1.885 (two European studies, covering 10 countries)	Primary Care All ages: 53% Among children: 85%	Primary Care All ages: 30%	
	\mathcal{O}	Hospital All ages:44%	Hospital All ages:14%	

Kissling E, et al. Euro Surveill. 2023

Maurel M, er al.Euro Surveill.

LAIV4 effectiveness in primary care 2014/15 and 2018/19 seasons

Year	A(H3N2)-adjusted VE (95% CI)	A(H1N1)pdm09-adjusted VE (95% CI)	B-adjusted VE (95% CI)	All-adjusted VE (95% CI)	Predominant circulating strain
2014/15 [70] 2015/16 [71] 2016/17 [72,73] 2017/18 [74,75] 2018/19 [5]	35.0 (-29.9 to 67.5) Not available 57.0 (7.7-80.0) -75.5 (-289.6 to 21.0) 27.1 (-130.5 to 77.0)	Not available 41.5 (-8.5 to 68.5) Not available 90.3 (16.4-98.9) 49.9 (-14.3 to 78.0)	100.0 (17.0-100.0) 81.4 (39.6-94.3) 78.6 (-86.0 to 97.5) 60.8 (8.2-83.3) Not available	Not available 57.6 (25.1–76.0) 65.8 (30.3–83.2) 26.9 (–32.6 to 59.7) 48.6 (–4.4 to 74.7) ¹	A/H3N2 A/H1N1pdm09 A/H3N2 A/H3N2 and B A/H1N1pdm09

Interim 2023/2024 Season Influenza Vaccine Effectiveness in Primary and Secondary Care in the United Kingdom

Estimated vaccine effectiveness against all influenzas 63% to 65% (among children aged 2–17, 36% to 55% among adults 18–64 40% to 55% among adults aged 65 and over.

Kassianos G, et al . Vaccine. 2020 Aug Influenza Other Respir Viruses 2024

Congress relative efficacy of trivalent live attenuated and inactivated 2024 influenza vaccines in children and adults LAIV more efficacious Children, 6 months-18 year Belshe Fleming Piedra/Halloran*

CONGRESS Comparing the incidence of confirmed influenza cases after influenza vaccination (all ages)

WAIdid

Garai., et al. Journal of Translational Medicine 2024

after influenza vaccination (children< 6 years)

	-	Nasal	Injec	table								
Study	Events	Total	Events	Total		0	R		OR	9	5%-CI	Weight
Ashkenazi et al. (2006)	29	1050	60	1035		·			0.46	[0.29;	0.73]	31.8%
Belshe et al. (2007)	53	4179	93	4172					0.56	[0.40;	0.79]	36.3%
Krishnan et al. (2021)	48	366	41	326	$\boldsymbol{\wedge}$		-		1.05	[0.67;	1.64]	32.0%
Random effects model		5595		5533	U		-		0.65	[0.23;	1.83]	100.0%
Prediction interval									[0.00; 16	7.55]	
Heterogeneity/ ² = 72% [7	7%; 92%]?	? ² = 0.13	25 p = 0.02	7				- 1				
Test for overall effectt ₂ =	-1.80 (p =	0.213)	· (0.01	0.1	1 10	100				

Garai., et al. Journal of Translational Medicine 2024

28-30 November 2024 Milan

2024

Why current influenza vaccines do not have optimal effectiveness?

- 1. Mismatch of circulating and vaccine strains
- 2. Reduced immunogenicity of IIV
- 3. The potential effect of original antigenic sin (OAS)

CONGRESS Influenza vaccine effectiveness, vaccine match, and strain prevalence by Northern Hemisphere influenza season and geographic region

NAIdid

Russell CA et al. Hum Vaccin Immunther 2024

WAddid Preexisting Immunity to influenza CONGRESS and response to infection and vaccination

Influenza-naive infant

- Complex maternal antibody
- Naive CD4 and CD8 T-cell repertoire
- Developmentally immature immune system
- Circulating maternal Ab could impact immune response to infection

Influenza-naive toddler

- Naive influenza-specific CD4, CD8, and B cells
- Little or no preexisting circulating antibody
- Prolonged duration of viral antigen

Postinfection

- Diverse CD4 and CD8 T-cell responses
- Diverse B-cell response and circulating Ab response, including stalk-reactive Ab

Toddler post-LAIV immunization

- Diverse memory CD4 and CD8 T-cell responses
- Diverse but limited abundance of B cells and circulating Ab

Infant/toddler post-IIV immunization

- HA-focused CD4 T-cell and B-cell response
- Circulating HA antibody
- Developmental status of the immune system depends on age at time of infection
- Preexisting HA-specific Ab may limit infection/duration of antigen presentation

Original Antigenic Sin (OAS)

An immunological phenomenon where the immune system's response to a second encounter with a antigenically similar antigen is dominated by memory cells generated during the initial exposure, rather than generating a new response tailored to the new pathogen.

This effect can result in suboptimal immunity because the immune response is "biased" toward the original antigen and may not effectively neutralize the new variant of the pathogen.

OAS is often observed in infections with rapidly mutating viruses, such as influenza and COVID and can influence the effectiveness of vaccines targeting such pathogens. WA[®]did CONGRESS neutralizing antibody responses after subsequent exposures

Cobey, S. Nat Immunol .2024

28-30 November 2024 Milan

2024

Kim YH, et al., Rev Med Virol. 2022

Strategies to develop new Influenza Vaccine

Next generation of non-egg-based influenza vaccines include:

- New manufacturing platforms
- Structure-based antigen design/computational biology
- Protein-based vaccines including recombinant technologie Review Expert Rev Vaccines. 2019 Mar;18(3):269-280. doi: 10.1080/14760584.2019.1578216.
- Nanoparticles
- Gene- and vector-based technologies
- Novel adjuvants
- New Epitopes for Rational Immunogen Design

The molecular definition of highly cross-reactive B cell epitopes can inform the design of vaccines for broad protection.

> Sci Rep. 2023 Sep 23;13(1):15911. doi: 10.1038/s41598-023-43003-2.

A computationally optimized broadly reactive hemagglutinin vaccine elicits neutralizing antibodies against influenza B viruses from both lineages

28-30 November 2024 Milan

2024

Aichael A Carlock ^{1 2}, Ted M Ross ^{3 4 5 6 7}

Epub 2019 Feb 14.

Immunological basis for enhanced immunity of nanoparticle vaccines

Hannah G Kelly ¹ ², Stephen J Kent ¹ ² ³, Adam K Wheatley ¹ ²

Consensus criteria for a universal influenza vaccine

024

(Jang YH and Seong BL. Front Cell Infect Microbiol. 2019)

	NIAID	WHO	BMGF	Consensus
Breadth	All influenza A viruses (influenza B protection would be the second target)	All influenza A viruses	All influenza A and B viruses	All influenza A viruses
Efficacy	At least 75% effective against symptomatic influenza infection	Better than that of current seasonal influenza vaccine	At least 70% effective against symptomatic influenza infection	At least 70% effective
Target population	All age groups	>6 weeks, no upper age limit including high risk groups	>6 weeks, no upper age limit including high risk groups	>6 weeks, no upper age limit
Duration of protection	At least 1 year	At least 5 years	3–5 years	At least 1 year

Ideal universal Influenza vaccine would provide durable protection against circulating strains, seasonal and pre-pandemic

Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem

5	WAIdi	d			
Y	Country	Minimal age	Maximal age	Year of introduction	
	USA	6 months	18 years		
	Finland	6 months	6 years		\sim
	Australia	6 months	5 years		
	Austria	6 months	15 years		
	UK	2 years	16 years	\sim	Universal
	Canada	6 months	5 years	2021	• • •
	Irerand	2 years	12 years	2021	Intiuenza
	Spain	6 months	5 years	2021	
	Lettonia	6 months	17 years	2021 + 2022	vaccinatio
	Malta	6 months	5 years	2021	
	Estonia	6 months	7 years	2022	
	Greece	6 months	4 years	2024	
	Slovakia	6 months	3 years	-	
	Slovenia	6 months	2 years	-	

INFLUENZA VACCINATION COVERAGE

28-30 November 2024 Milan 2024

untry	Age group	Coverage
К	2 years	55.2% (2022)
	3 years	57.8% (2022)
	4 – 11 years	61.9% (2021); 57.2% (2022); 48.0% (2023)
	12– 16 years	43.6% (2022)
reland	2 years – 4 years	59.7% (2017)
	2 years – 12 years	18.8% (2022)
	13 years – 17 years	11.6% (2022)
inland	6 months – 3 years	42.9% (2021); 41.1% (2022)
	3 years – 6 years	34.7% (2021); 31.5% (2022)
ISA	6 months – 4 years	75.2% (2020); 54.7% (2022); 60.6% (2023)
	5 months – 12 years	64.5% (2020); 50.3% (2022); 50.3% (2023)

Were we are now with vaccination of children against influenza

- Vaccinating children against influenza remains an essential public health measure
- Challenges persist, including the suboptimal effectiveness, the unresolved impact of original antigenic sin on vaccine performance.
- The complexity of the immune response to influenza requires continued research for more broadly protective and durable vaccines.

Where we are going.

- Developing next-generation influenza vaccines
- Understanding the long-term effects of early immune priming,
- Enhancing public confidence and access to vaccination to ensure the benefits of vaccination.

